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Abstract
Fungi are key players in biotechnological applications. Although several studies focusing on fungal diversity and genetics 
have been performed, many details of fungal biology remain unknown, including how cellulolytic enzymes are modulated 
within these organisms to allow changes in main plant cell wall compounds, cellulose and hemicellulose, and subsequent 
biomass conversion. With the advent and consolidation of DNA/RNA sequencing technology, different types of informa-
tion can be generated at the genomic, structural and functional levels, including the gene expression profiles and regula-
tory mechanisms of these organisms, during degradation-induced conditions. This increase in data generation made rapid 
computational development necessary to deal with the large amounts of data generated. In this context, the origination of 
bioinformatics, a hybrid science integrating biological data with various techniques for information storage, distribution and 
analysis, was a fundamental step toward the current state-of-the-art in the postgenomic era. The possibility of integrating 
biological big data has facilitated exciting discoveries, including identifying novel mechanisms and more efficient enzymes, 
increasing yields, reducing costs and expanding opportunities in the bioprocess field. In this review, we summarize the cur-
rent status and trends of the integration of different types of biological data through bioinformatics approaches for biological 
data analysis and enzyme selection.
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Introduction

Fungi are heterotrophic eukaryotic organisms that are widely 
distributed in the environment (Maharachchikumbura et al. 
2021; Liu et al. 2020). For centuries, fungi have been applied 
in processes of human interest, such as food production and 
agriculture. Fungi are an important source of enzymes, plat-
form for the discovery of new enzymes, and/or host for the 
production of industrial enzyme products. Different classes 
of enzymes and bioactive compounds from fungi, such as 
hydrolases, peroxidases, lipases, and laccases, are used in 
second generation biofuel production, the pharmaceutical 
industry, food processing, pulp and paper industry, textiles 
and bioremediation (Singh et al. 2021; Huang et al. 2021; 
Anasonye et al. 2014; Saravanan et al. 2021; Tomer et al. 
2021). With the advent of biotechnology, the application 
of fungi in bioprocesses has become commonplace (Singh 
and Gehlot 2020; Jouzani et al. 2020). The bioprospecting 
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of enzymes and compounds produced by fungi involves dif-
ferent scientific disciplines, such as genetics, microbiology, 
biotechnology, molecular biology, and bioinformatics (Wang 
et al. 2020; Saldarriaga-Hernández et al. 2020; Abrashev 
et al. 2021).

Bioinformatics is a scientific discipline that arose with the 
demand to analyze large-scale data produced by sequenc-
ing and other high-throughput techniques, encompassing 
knowledge of biotechnology, molecular biology, computing, 
and statistics (Pereira et al. 2020; Orlov and Baranova 2020; 
Jhalia and Swarnkar 2021). Bioinformatics can be defined 
as a science that links biological data storage, interpreta-
tion, and analyses with computational biology, enabling the 
integration of large-scale data produced through genomics, 
transcriptomics, and proteomics (Xu et al. 2020; Diniz and 
Canduri 2017; Saeys et al. 2007). Advances in bioinformat-
ics have allowed the emergence of techniques for dealing 
with genome sequencing data, demanding a high compu-
tational processing capacity. Both fields evolved quickly in 
recent decades, and following the advances achieved by the 
Human Genome Project (Venter et al. 2001), many other 
industrially and clinically relevant fungal species lines have 
been sequenced (Martinez et al. 2008a; Machida et al. 2005; 
Van Den Berg et al. 2008; Batista et al. 2020).

The genomic sequencing of fungi is an essential technique 
for understanding the evolutionary principles of particular 
groups and searching for targets of biotechnological interest 
(Gurjar et al. 2019; Pramesh et al. 2020; Alberti et al. 2020). 
The process of genome assembly, prediction, and annotation 
involves diverse bioinformatics tools and analyses that are 
important for revealing the hypothetical function of a given 
gene or identifying clusters of nearby genes that are related 
to a particular process (Giani et al. 2020; Faksri et al. 2016; 
Pop and Salzberg 2008).

The complete genome of a fungus makes it possible 
to characterize the profile of a certain group of enzymes, 
such as carbohydrate-active enzymes (CAZymes) (Gujar 
et  al. 2018; Zhao et  al. 2013). CAZymes are enzymes 
whose activity is related to carbohydrates and are ration-
ally grouped in the CAZy (http:// www. cazy. org/) database 
(Huang et al. 2018). These enzymes are produced by all 
fungi (Glass et al. 2013) and are applied in bioprocesses 
related to water decontamination and the food, textile, 
paper, and cellulose industries. Important degradative 
CAZymes are also needed and are a target of prospect-
ing by the energy sector for the production of biofuels 
from plant biomass (Bohra et al. 2018) through enzymatic 
hydrolysis. These enzymes are grouped into five catalytic 
modules: glycoside hydrolases (GHs), glycosyl trans-
ferases (GTs), polysaccharide lyases (PLs), carbohydrate 

esterases (CEs), and auxiliary activities (AAs) (Canta-
rel et al. 2009; Levasseur et al. 2013). In addition, some 
enzymes are associated with binding modules known as 
carbohydrate-binding modules (CBMs) (Shoseyov et al. 
2006). All of these modules are subdivided into families 
categorized based on level-specific information.

The study of gene expression levels under certain bio-
logical conditions is fundamental for understanding the 
complex expression systems of eukaryotes. RNA-sequenc-
ing (RNA-Seq) techniques associated with the refinement 
of bioinformatics tools reliably identify and quantify 
gene expression under different conditions and can even 
be used to study the exon composition in the alternative 
splicing process (Geniza and Jaiswal 2017; Costa-Silva 
et al. 2017; Ding et al. 2017; Luecken and Theis 2019). 
Different approaches are used to calculate the correlations 
between expression data, enabling researchers to predict 
the coregulation between genes. An understanding of the 
correlations between genes can allow researchers to pre-
dict the genes involved in a particular metabolic pathway 
or process at a systematic level (Hurley et al. 2012; Zhang 
et al. 2016).

Bioinformatics tools are also fundamental for predic-
tions and in silico modeling for target selection during the 
biochemical and structural characterization of a protein 
(Martins-Santana et al. 2018; Guzmán-Chávez et al. 2018; 
Silva et al. 2020). Protein engineering is a unique process 
that requires in-depth knowledge of the organism being 
studied; thus, basic information, such as structural and 
functional information, on the genome of the organism 
must first be obtained to generate a set of enzymes that are 
modified and adapted for a particular bioprocess (Yang and 
Zhang 2018; Milić and Veprintsev 2015). The prospection 
of new proteins and the improvement of protein efficiency 
are strategies to achieve the highest efficiency in different 
industrial processes. In addition, the future development 
and improvement of bioinformatics and computational 
tools for predicting and assigning the functions of noni-
dentified and/or unannotated proteins show great potential.

The advancement of the application of computational 
knowledge to solve biological problems has generated a 
revolution in the way we understand complex systems 
involving the regulation of genes and proteins. The inte-
gration of different types of biotechnological data is only 
possible through the implementation of bioinformatics 
tools, the development of algorithms and the construc-
tion of databases (Fig. 1). In this review, we summarize 
the main approaches for the integration of different types 
of biological data from fungi to guide the selection and 
design of targets for application in bioprocesses.

http://www.cazy.org/
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Application of bioinformatics 
in the prospecting and engineering 
of enzymes

Genomic studies for mining enzymes 
of biotechnological interest in fungi

Genomics technology is a basic tool for searching for 
genes of interest that may have biotechnological applica-
tions. Fungi generally have small genomes relative to other 
organisms (such as plants) (Stajich 2017), which facilitates 
the execution of draft genome sequencing projects in fun-
gal species. However, high-quality sequenced genomes are 
available for few species, which highlights the challenges 
in this type of project (Stajich 2017; Jauhal and Newcomb 
2021). The main challenges in fungal genome assembly are 
related to the sequencing coverage necessary to fill gaps in 
the assembly with long and short reads and the assembly 
of repeated elements in the genome, especially in intron 
regions, which demands sufficient computational capacity 
for data processing (Amarasinghe et al. 2020; Magi et al. 
2018).

Although many draft fungal genomes have been 
sequenced in recent years (Lange et al. 2021; Lopes et al. 
2020), nearly complete genomes are available for only a 
few model fungi, such as Saccharomyces cerevisiae (Wei 

et al. 2007; Peter et al. 2018), Trichoderma reesei (Martinez 
et al. 2008a; Li et al. 2017), Aspergillus fumigatus (Nierman 
et al. 2005; Fedorova et al. 2008), and Neurospora crassa 
(Galagan et al. 2003; Wu et al. 2014). Even these genomes 
still include many genes with unknown functions (Ellison 
et al. 2014). The biological databases used for the automatic 
annotation of genes often include redundant information and 
show low curation, which hinders the process of gene anno-
tation, and many genes/proteins are annotated as hypotheti-
cal in a fungal genomic project (Chen et al. 2017, 2020). 
FungiDB (https:// fungi db. org/ fungi db/ app) is a platform that 
integrates different genomic and functional information from 
fungi to facilitate the process of curating genomic annotation 
(Basenko et al. 2018).

Sequenced fungal genomes can be used to search for 
genes with biotechnological applications through several 
different approaches, such as prospecting coregulated gene 
clusters and secondary metabolites or protein families, 
including CAZymes and phosphatases; prospecting for 
transcription factors (TFs) related to the regulation of genes 
involved in a particular bioprocess; SNP calling related to 
gene regions; and analyzing motifs in promoter and regula-
tory regions.

The genomic contents of CAZymes have been charac-
terized in a large variety of fungi (Fig. 2). The identifica-
tion of the CAZyme genome content is related to the fun-
gal degradation capacity; however, the number of CAZyme 
families in the genome does not seem to directly correlate 
with the production levels and enzymatic efficiency exhib-
ited by the fungus (Ferreira Filho et al. 2017; Druzhinina 
and Kubicek 2017; Martinez et al. 2008b). Nevertheless, 
the study of this group of enzymes provides insights into 
the evolution, mode of life, and biotechnological applica-
tion of fungi. Barrett et al. (2020) used the predictions 
and annotations of the CAZyme secretomes of 465 Asco-
mycota and Basidiomycota genomes to examine the evo-
lutionary relationships of the fungal CAZyme secretome. 
In another study, the CAZyme contents of the proteomes 
of Aspergillus terreus, T. reesei, Myceliophthora ther-
mophila, N. crassa, and Phanerochaete chrysosporium 
in the presence of different lignocellulosic substrates 
were determined, indicating that the expression of these 
enzymes is directly related to substrate specificity (Arn-
tzen et al. 2020). Additionally, the type of process (liquid-
state (SmF) or solid-state fermentation (SSF)) influences 
fungal metabolism and subsequent enzyme production as 
a determinant of the enzymatic activity induced (Teigise-
rova et al. 2021). SSF culture, a fed batch culture, presents 
faster oxygenation but a slower sugar supply than SmF. 
The process is static without mechanical energy expen-
ditures. In contrast, SmF cultures work as homogeneous 
systems requiring large energy expenditures to supply oxy-
gen at sufficiently fast rates to address the large oxygen 

Fig. 1  Data integration approach for selecting enzymes for applica-
tion in bioprocesses

https://fungidb.org/fungidb/app
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demand. Automated fed batch supply of substrates is nec-
essary to avoid catabolite repression (Viniegra-González 
et al. 2003). SSF processes have been explored for protease 
production due to the higher yield achieved, and novel 
microorganisms are being tested (López-Gómez and Venus 
2021; Benabda et al. 2019; Usman et al. 2021).

Fungi produce a wide variety of secondary metabolites 
that can be used in the pharmaceutical industry in particu-
lar, demonstrating the potential of genomic studies for the 
discovery of new secondary metabolites. Cheng et al. (2020) 
sequenced the genome of the fungus Calcarisporium arbus-
cula and found 65 clusters of secondary metabolite synthesis 
genes, including genes related to mycotoxin synthesis. Wei 
et al. (2020) identified a new molecule, pyranoviolin A, from 
the sequencing and analysis of clusters of genes from the 
Aspergillus violaceofuscus genome.

Software tools and scripts for data processing automa-
tization are applied to improve genomic analyses, generat-
ing large amounts of processed data (Huber et al. 2015; Qu 
et al. 2016). In the stages of assembly, gene prediction, and 
automatic annotation, several developed software programs 
have been applied in each step of data processing (Table 1). 
For the processing of textual data in biological analysis, the 
most commonly used programming languages are Python 
and Perl, which have specific modules for bioinformatics 
analysis. For tabulation and statistical analysis, the main 
tools used are Excel and R tools.

Table  1 summarizes some bioinformatics tools for 
sequence assembly, gene prediction, and automatic anno-
tation that can be used in a fungal genomic project. The 

choice of the tool will vary according to the objective of 
each project.

Transcriptomics applied in the selection of enzymes 
in fungi

Transcriptomic analysis is used to elucidate a specific cell 
response state. It is an important strategy for studying the 
expression of large gene sets under particular conditions. 
Fungi quickly adapt their metabolism to different environ-
ments, and the adaptation process is driven by coordinated 
gene expression responses. The set of expressed genes and 
their expression levels are directly related to the species and 
growth conditions, such as the carbon source, temperature, 
luminosity, and humidity. These characteristics make tran-
scription analysis a precise tool for understanding the state 
of the cell as well as differences regarding transcriptional 
regulation in different states. It is essential to understand 
the transcriptome (the set of all transcribed RNAs) to inter-
pret the functional elements of the genome and reveal the 
molecular constituents of cells and tissues in different stages 
of development (Bull et al. 2000; Wang et al. 2009).

Thus, transcriptomic analysis methods have evolved in 
recent decades from the analysis of expressed sequence tags 
(ESTs) to RNA-Seq, which is a high-throughput approach 
for deep transcriptome sequencing that can precisely deter-
mine all transcripts and their expression levels in a con-
trolled state, while also providing insight into the regulatory 
mechanisms of gene expression control. From a transcrip-
tion profile, the sets of fungal gene transcripts conferring 

Fig. 2  Genomic annotation of 
CAZymes in different fungi of 
biotechnological interest
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different enzymatic activities can be analyzed (Horta et al. 
2014; Glass et al. 2013; dos Santos Castro et al. 2014), pro-
viding detailed information on the molecular mechanisms 
of enzyme production. This technology has also facilitated 
the genetic manipulation of strains to increase their produc-
tion potential and the discovery of new enzymes or proteins 
(Borin et al. 2017; Zhao et al. 2018).

In fungi, ESTs provide initial information on the tran-
scribed regions of genes. The first Trichoderma EST librar-
ies were generated from T. reesei QM6a under biomass 
degradation conditions (Lorito et al. 2010). The successful 
application of ESTs in T. harzianum provided the first indi-
cation of gene expression in mycelium (Liu and Yang 2005) 
and later allowed the identification of genes with putative 
roles in mycoparasitism against Fusarium solani (Steindorff 
et al. 2012). Using ESTs, transcriptional processes have been 
explored in industrially relevant species; for example, glu-
cose metabolism has been studied in the enzyme producer 
T. reesei (Chambergo et al. 2002), and genes with putative 
roles in crop contamination have been identified in Asper-
gillus oryzae (Akao et al. 2007) and Aspergillus flavus (Yu 
et al. 2004).

The arrival of next-generation sequencing (NGS) and 
RNA-Seq approaches has promoted many successful stud-
ies involving transcriptome analysis. These technologies 

produce millions of base pairs of sequencing reads in the 
form of short- to medium-length reads (30–400 bp reads, 
depending on the DNA sequencing technology) in a short 
time with low costs. Next-generation sequencing has accel-
erated RNA-Seq experiments, allowing studies of even more 
diverse conditions and species (Lorito et al. 2010; Wang 
et al. 2009). The transcriptomic field has developed very 
quickly, and RNA-Seq has become the preferred method for 
gene expression profiling (McGettigan 2013; Parkhomchuk 
et al. 2009; Corchete et al. 2020) by cDNA sequencing. The 
Illumina Genome Analyzer, HiSeq, MiSeq, and NextSeq 
platforms are some of the technologies for RNA-Seq that 
have become available since 2006. These NGS platforms are 
capable of paired-end sequencing, resulting in high cover-
age, large numbers of reads, and high-quality sequence data 
relative to single-end sequencing (Ambardar et al. 2016). 
Many studies have used RNA-Seq to elucidate enzymatic 
activities, protein structures, and synergistic reactions among 
enzymes (Horta et al. 2018; Santos et al. 2016; Mhuantong 
et al. 2021; Liu et al. 2021). On the basis of RNA-Seq data, 
genes encoding hydrolytic enzymes involved in plant cell 
wall degradation have been identified in different species of 
Trichoderma, providing important information for the selec-
tion of species and target genes for use in industrial enzyme 
production technologies (dos Santos Castro et al. 2014). 

Table 1  Bioinformatics tools used for genome analysis

Software Application Operating system Command line or graphic 
interface

References

SPAdes De novo assembler Linux Command line Nurk et al. (2013)
Celera assembler De novo assembler Unix system and Mac OS-X Command line Myers et al. (2000)
Pilon Draft assembly improvement 

and variant detection
Unix System Command line Walker et al. (2014)

BWA Error correction by low diver-
gence alignment

Unix System Command line Li and Durbin (2009)

FGNESEH Ab initio gene predictor Windows and Unix system Command line and Graphic 
interface

Solovyev et al. (2006)

AUGUSTUS Ab initio gene predictor Windows and Unix system Command line and Graphic 
interface

Stanke and Morgenstern 
(2005)

MAKER Genome annotator Unix system and MAC OS-X Command line Cantarel et al. (2008)
LTR_FINDER Repeat and transposable ele-

ment annotator
Windows Graphic interface Xu and Wang (2007)

SignalP5.0 Signal peptide predictor Windows Graphic Interface Armenteros et al. (2019)
BLAST* alignment tool Unix system, MAC OS-X and 

Windows
Command line and Graphic 

interface
Altschul et al. (1990)

HMMER3 Homology searches and align-
ment

Windows and Unix system Command line and Graphic 
interface

Krogh et al. (1994)

InterProScan Protein classification and func-
tional analysis

Windows and Unix system Command line and Graphic 
interface

Quevillon et al. (2005)

FunGAP Annotator and evidence-based 
model predictor

Unix system Command line Min et al. (2017)

Artemis Sequence or genome visualiza-
tion, manual editing

Windows, Unix system and 
MAC OS-x

Command line and Graphic 
interface

Rutherford et al. (2000), 
Carver et al. (2005)
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Transcriptomic studies on well-known filamentous fungi 
such as T. reesei and Aspergillus niger have been employed 
to improve enzymatic cocktail technologies, leading to the 
production of new enzymes and more efficient mutants to 
reduce costs involved in second-generation bioethanol pro-
duction (de Gouvêa et al. 2018; de Souza et al. 2011; Borin 
et al. 2017; dos Santos Castro et al. 2014).

Many functionalities are currently available for transcrip-
tomic analysis, ranging from specific programs to entire plat-
forms dedicated solely to genomic analyses, including tools 
for RNA-Seq assembly, mapping, annotation, expression, 
and differential expression analyses, etc. Regarding mapping 
and quantification, various tools can be used, including ref-
erence genomes, spliced read aligners, unspliced read align-
ers, pseudoalignment and quasi-mapping, and various tools 
for the processing of all possible situations in RNA-Seq 
analysis can be found for (Costa-Silva et al. 2017). Table 2 
lists the currently available tools that are commonly used for 
RNA-Seq data management.

Data integration: coregulation networks

Due to the development of molecular biology and high-
throughput technologies, the use of systems biology and 
combinations of data sources from different omic levels to 
decipher the enormous network of cellular relationships has 
attracted increasing interest (Kitano 2002; Aderem 2005). 
Regarding the industrial enzymatic engineering of fungi, 
several studies encompassing this holistic perspective have 
been published (Kubicek 2013; Akcapinar and Sezerman 
2016); however, the computational modeling of these inter-
acting structures remains a challenge.

In recent decades, the use of complex networks has 
emerged as a powerful analytical tool for complex systems, 
with common applications in diverse areas of knowledge due 
to the common dynamics and architecture of such structures 
(Wilson 1999; Strogatz 2001). By using principles of graph 
theory, network science offers methodological resources 
for elucidating the dynamics and interactions of these com-
plex systems (Barabási 2013), including molecular biology. 
When using omics data, there are different possible types 
of representations of cellular interactions through networks, 
with nodes (vertices) and links (edges) representing the com-
ponents of the system and their relationships (e.g., proteins 
and their metabolic interactions, respectively) (Vazquez 
et al. 2003).

In fungal research, the first network approaches were 
mainly based on protein interactions for metabolic recon-
struction and functional inferences using omic data and 
biological databases such as the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (Kanehisa 2002) and MetaCyc 
(Caspi et al. 2014). However, because of the high availability 
of data, other types of networks have now been employed 
(Koutrouli et al. 2020), such as protein–protein interaction 
networks, sequence similarity networks, gene regulatory net-
works, signal transduction networks, metabolic networks, 
and gene coexpression networks.

Several biological databases and tools assist with the con-
struction of these structures (Mering et al. 2003; Stark et al. 
2006; Ulrich and Zhulin 2007; Barrett et al. 2012; Caspi 
et al. 2014). The main challenge is the method to properly 
measure unknown relationships among genes, especially 
considering the potential presence of noise and nonlinear 
interactions (Koutrouli et al. 2020). A common and cur-
rently employed strategy to predict gene functions is to use 

Table 2  Tools used for mapping and differential expression analysis in transcriptome studies

Software Application Operating system Command line or graphic interface References

HISAT2 Mapping reads Linux Command line Kim et al. (2019)
STAR Mapping reads Linux and Mac OS-X Command line Dobin et al. (2013)
TopHat2 Mapping reads Linux and Mac OS-X Command line Kim et al. (2013)
Salmon Quantifying the expression of tran-

scripts using RNA-Seq data
Linux Command line Patro et al. (2017)

Kallisto Quantifying the abundance of 
transcripts

Linux and Mac OS-X Command line Bray et al. (2016)

BWA Mapping reads Unix system Command line Li and Durbin (2009)
BBMap Short read aligner Linux Command line Bushnell (2014)
Cufflinks Transcriptome assembly and dif-

ferential expression analysis for 
RNA-Seq

Unix system and MAC OS-X Command line Trapnell et al. (2012)

DESeq2 Bioconductor package to perform 
differential gene expression 
analysis

Windows, Linux and MAC OS-X Graphic interface and command 
line

Love et al. (2014)

EdgeR R package for differential expres-
sion analysis

Windows, Linux and MAC OS-X Graphic interface and command 
line

Robinson et al. (2010)
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coexpression and coregulation data, including coexpressed 
gene clusters (Lawler et al. 2013; Sieber et al. 2014), Bayes-
ian inferences (Ferreira Filho et al. 2020; Sazal et al. 2020) 
and coexpression networks.

With the development of high-throughput technolo-
gies, including microarrays and RNA-Seq, large amounts 
of gene expression data are being continuously generated. 
Because of the large volume of transcriptome data, scal-
able methods are required to decipher novel relationships 
(Saha et al. 2017). Through gene coexpression networks, 
gene–gene expression dependencies can be measured and 
can supply insights into functional associations (Zhao et al. 
2010). Genes with a similar expression pattern across mul-
tiple samples are grouped and often participate in the same 
biological process (Langfelder et al. 2013). By using this 
principle of guilt-by-association (Wolfe et al. 2005), a gene 
coexpression network analysis allows the prediction of the 
functions of unknown genes and, accordingly, the prediction 
of the pathways involving those genes.

Gene coexpression network construction is based on 
pairwise correlations between each possible pair of genes 
in a dataset. Some correlation measures that are widely used 
to compute pairwise correlations are Pearson's correlation 
and Spearman's correlation (Song et al. 2012; Usadel et al. 
2009). Using the correlation matrix as a similarity measure, 
a network is constructed in which nodes represent genes that 
are connected to other genes by edges based on coexpression 
relationships. These correlation values can also be trans-
formed to guarantee network properties, using, for exam-
ple, weighted gene correlation network analysis (WGCNA) 
methodology (Langfelder et al. 2013), the highest reciprocal 
rank (HRR) method (Mutwill et al. 2011), correlation coef-
ficient cutoffs (Burks and Azad 2016), and mutual ranks 
(Obayashi and Kinoshita 2009).

With this model structure, clustering approaches are gen-
erally employed to find groups of coexpressed genes using 
methods of hierarchical clustering coupled with a branch 
cutting method (Langfelder and Horvath 2008) for defining 
network modules and employing additional algorithms, such 
as MCODE (Xu and Hejzlar 2008), for defining more pre-
cise groups. Using the guilt-by-association principle, these 
modules can be interpreted through functional enrichment 
analysis to obtain biological insights about the coexpressed 
genes and their impact on molecular mechanisms. Generally, 
the Gene Ontology (GO) (Ashburner et al. 2000) and KEGG 
(Kanehisa and Goto 2000) databases are the most commonly 
used to characterize molecular functions and metabolic path-
ways, respectively.

In addition to the identification of genes acting as a mod-
ule in a network, an important goal is to determine which 
gene(s) effectively represent the behavior of the module or 
may be important for module robustness (Koutrouli et al. 
2020). For this purpose, network centrality measures are 

often employed (Barabási 2013), and the most common 
strategy is to calculate highly connected genes (hubs). 
These hub genes are the central nodes in a network structure 
(Koutrouli et al. 2020) and are considered the central play-
ers in this structure (Li et al. 2018), but they are not always 
directly associated with a trait of interest (Langfelder et al. 
2013).

Following a scale-free topology criterion, the WGCNA 
methodology has been extensively used to infer novel func-
tions. Instead of using binary information (connected = 1, 
unconnected = 0) with correlation cutoffs, WGCNA uses a 
‘soft’ threshold to determine the weights of the edges con-
necting pairs of genes, which has been proven to yield more 
robust results than unweighted networks (Zhang and Hor-
vath 2005).

Because of the improvement of ‘omics’ approaches used 
in biotechnological research, more studies are evaluating 
the molecular relationships among biological systems. For 
example, gene coexpression network analysis has been 
used in various biological contexts, such as human dis-
eases (mostly cancer), plant biotechnology, plant-pathogen 
interactions, etc. This approach has also been applied in the 
study of hydrolytic microbial enzymes for industrial bio-
processes, including second-generation ethanol technology, 
as described below.

In a previous study, gene coexpression networks were 
inferred based on a transcriptome dataset of A. niger grown 
under two different experimental conditions (van den Berg 
et al. 2010). This approach allowed the prediction of biologi-
cally relevant modules and a search for enriched putative TF 
binding sites, which improved the understanding of higher-
order regulatory structures in the studied fungi.

Other studies have reported the use of gene coexpression 
network analysis in this context. Using the transcriptomes of 
T. reesei, T. harzianum, and T. atroviride grown on cellulose 
and glucose, a coexpression network was inferred for each 
species (Horta et al. 2018). Based on the resulting data, a set 
of 80 genes shared among the three Trichoderma species was 
obtained, which could represent a common cellulose degra-
dation system. Similarly, Almeida et al. (2021) constructed 
gene coexpression networks based on the transcriptome data 
of a novel strain of T. harzianum grown on cellulose and 
glucose. For this fungus, the results indicated that several 
genes may function in a coordinated manner during cellulose 
degradation, which revealed the capacity of T. harzianum as 
an enzyme producer (Almeida et al. 2021).

Additionally, for species of the filamentous genus Tricho-
derma, a gene coexpression network based on the transcrip-
tome dataset of T. harzianum grown on cellulose and glu-
cose was constructed to explore CLR2 regulator activity 
during biomass degradation (Ferreira Filho et al. 2020). In 
the same study, using gene expression data for secreted pro-
teins, a Bayesian network of induced/repressed genes in T. 
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harzianum was inferred under cellulose-based growth condi-
tions. The results revealed potential candidates for the vali-
dation of functions during the degradation of plant biomass 
in further studies.

Through WGCNA based on a transcriptome dataset of 
T. reesei grown on steam-exploded sugarcane bagasse, 28 
highly connected gene modules were identified (Borin et al. 
2018). One of these modules was enriched with the most 
representative core of cellulolytic enzymes, including their 
regulators and transporters. For several hub genes, DNA 
binding sites for the main activator of (hemi)cellulases, 
XYR1, were found in the promoter regions, which suggests 
a putative role of these hubs in bagasse cell wall breakdown 
(Borin et al. 2018).

To explore the biotechnological potential of Trichoderma 
spp., the WGCNA package was used to explore the genetic 
mechanisms related to the XYR1 and CRE1 TFs during cel-
lulose degradation (Rosolen et al. 2020). For this purpose, 
the mycoparasite fungus T. atroviride and two mycoparasitic 
strains with the hydrolytic potential of T. harzianum were 
selected to model a network for each strain. Based on the 
transcriptome dataset obtained when the fungi were grown 
on cellulose and glucose, gene coexpression network analy-
sis revealed that the strains developed different molecular 
mechanisms to control the regulation and the expression 
of genes encoding proteins related to cellulose degradation 
(Rosolen et al. 2020).

Recently, WGCNA was used to explore the molecular 
mechanisms used by Penicillium oxalicum during biomass 
degradation (Li et al. 2020a). Based on a transcriptome 
dataset for the fungus grown on two novel carbon sources, 
methylcellulose and 2-hydroxyethyl cellulose, 17 highly 
connected modules were generated. One of these modules 
included major cellulase- and xylanase-encoding genes of 
P. oxalicum as well as transcription factor- and transporter-
encoding genes (Li et al. 2020a).

WGCNA is one of the most commonly used approaches 
for constructing and analyzing gene coexpression networks, 
it has recently been adapted for proteomics studies (Vella 
et al. 2017). Furthermore, a large-scale proteomics approach 
for investigating and comparing the enzymatic responses of 
the filamentous fungi Aspergillus terreus, Trichoderma ree-
sei, Myceliophthora thermophila, Neurospora crassa, and 
Phanerochaete chrysosporium has been presented (Arntzen 
et al. 2020). In this study, these fungi were grown on five 
different substrates: grass (sugarcane bagasse), hardwood 
(birch), softwood (spruce), cellulose, and glucose. Gene 
coexpression networks were inferred for each fungus based 
on proteomics data and the use of the WGCNA package. The 
results allowed the identification of the adaptation profile of 
each fungus in response to the different substrates, and the 
results suggested the specificity of the CAZymes according 
to the substrate (Arntzen et al. 2020).

The gene coexpression networks of transcriptome and 
proteome data allow the application of computational sim-
ulations for predicting the behavior of the biological sys-
tem over time or under different conditions. The knowledge 
acquired through these approaches paves the way for fur-
ther experimental studies to validate gene function and to 
improve the use of filamentous fungi as enzyme producers 
in the biotechnology field.

In silico characterization of transcription factors 
related to bioprocesses

TFs control transcription by specifically binding to DNA 
sequences (Todeschini et al. 2014). Thus, studying these 
proteins can provide important resources for researchers who 
are interested in studying the regulation of gene expression. 
In this context, computational studies have been used to 
provide support for bioinformatics approaches for searching 
new targets across genomes. The obtained knowledge could 
be used as a basis for new biotechnological applications in 
the gene regulation field.

In filamentous fungi, the expression of the genes encod-
ing plant biomass-degrading enzymes is tightly controlled by 
TFs, which function according to the carbon source available 
in the environment. In the presence of readily metabolizable 
sugars, such as glucose, fungal genes responsible for the 
expression of cellulolytic and hemicellulolytic enzymes are 
repressed, while in the presence of inductive carbon sources, 
such as cellulose, the expression of fungal genes encoding 
CAZymes is activated (de Paula et al. 2018).

Thus, the regulatory network responsible for cell wall 
deconstruction is regulated by several transcription fac-
tors, including the positive regulators XYR1 (Stricker 
et al. 2006), ACEII (Aro et al. 2001), LAE1 (Seiboth et al. 
2012), BglR (Nitta et al. 2012), VEL1 (Karimi Aghcheh 
et al. 2014), and the HAP 2/3/5 complex (Zeilinger et al. 
2001), and the negative regulators CRE1 (Portnoy et al. 
2011), ACEI (Aro et al. 2003), and RCE1 (Cao et al. 2017). 
Additionally, holocellulose genes may also target other TFs, 
such as Xpp1 (Derntl et al. 2015), SxlR (Liu et al. 2017), and 
CRZ1 (Martins-Santana et al. 2020) (Fig. 3).

Due to the difficulty in the heterologous expression of 
some recombinant proteins in prokaryotic and eukaryotic 
hosts, the in silico characterization of TFs related to bio-
processes is useful to guide experiments and to provide new 
insights into the regulation of gene expression. These bio-
informatics approaches have been reported to show great 
potential in exploring transcriptional regulation in important 
enzyme biofactories, particularly in industrial filamentous 
species, which is explored next.

The elucidation of the molecular mechanisms involved in 
the expression of genes encoding hydrolytic enzymes at the 
transcriptional level has attracted increasing interest to allow 
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the rational engineering of fungi with increased enzyme pro-
duction levels. These efforts might enable the identification 
of many regulatory proteins and signaling pathways respon-
sible for the coordination of cellulase expression under dif-
ferent environmental conditions.

Regarding the main regulators of the expression of cel-
lulase genes in T. reesei, the consensus binding sequences 
of XYR1 and CRE1 (5′-GGC WWW -3′ and 5′-SYGGRG-3′, 
respectively) were initially proposed based on comparisons 
with homologous regulators from other organisms (Kiesen-
hofer et al. 2018). However, these sequences cannot be used 
to distinguish between genes regulated by these regulators 
and those that are not (Furukawa et al. 2009).

The in silico identification of the cis-regulatory elements 
of XYR1 and CRE1 was subsequently reported. The authors 
identified potential binding sites for both regulatory proteins 
in 22 cellulase promoters and found that CRE1 affected xyr1 
expression (Silva-Rocha et al. 2014). Following a similar 

approach, a recent study investigated the role of the TF 
CRZ1 in T. reesei during biomass degradation. Using bio-
informatics methods, CRZ1 binding motifs were identified 
in the promoter regions of genes encoding proteins related 
to plant cell wall depolymerization, such as cellulases, hemi-
cellulases, sugar transporters, calcium transporters, and 
TFs. These findings are crucial for improving engineering 
attempts to construct new cellulase-responsive promoters 
and to understand the role of these regulators in T. reesei at 
the global scale.

Integrated transcriptomic data are also an option for iden-
tifying novel TFs related to the control of the gene expres-
sion of lignocellulosic hydrolases in filamentous fungi. In 

Fig. 3  TFs related to the expression of hydrolytic enzymes in fungi grown in the presence of glucose or cellulose
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a recent study, the authors used high-throughput data and a 
comparative genomics approach to identify novel potential 
TFs related to the control of hydrolytic enzyme-encoding 
genes in T. reesei and A. nidulans (Antonieto et al. 2019). 
The bioinformatics approach led to the characterization of 
an AZF1 homolog in T. reesei and the discovery of a novel 
Cys2His2-type zinc finger regulator involved in plant bio-
mass deconstruction.

Identifying the genes regulated by a TF through in silico 
analysis is important for understanding not only the func-
tion of the regulatory protein but also the gene expression 
network of the cells. Although not all of these genes are 
considered direct target genes in the absence of experi-
mental support, the insights provided by the bioinformat-
ics approaches allow us to elucidate the biological reactions 
occurring at a molecular level, providing targets for further 
target-validation experiments.

Hypothetical proteins: approach for identification 
and characterization

Since the genomics era began in the 1990s, the identifica-
tion of open reading frames (ORFs) whose products are 
annotated as hypothetical proteins has become increasingly 
common. In biochemistry, hypothetical proteins (also called 
“uncharacterized” or “unknown proteins”) are by definition 
those for which amino acid residue comparisons according 
to sequence similarity with other gene/protein sequences 
deposited in a databank (GenBank, https:// www. ncbi. nlm. 
nih. gov/ genba nk/, PDB, https:// www. rcsb. org/) indicate 
that no accurate functions for such targets can be assigned 
and for which no evidence of in vivo existence is available 
(Sivashankari and Shanmughavel 2006). Interestingly, a 
quick look at genomic survey results reveals that ~ 50–70% 
of an organism's total genes generally have attributed bio-
logical roles, showing that a high percentage of unknown 
targets remain to be exploited (Bork 2000; Kawaji and 
Hayashizaki 2008; Armstrong et al. 2019).

Advances in the field of bioinformatics associated with 
studies using multiomic methodologies have contributed 
massively to the identification and functional assignment of 
hypothetical proteins (Subramanian et al. 2020). Because of 
these tools, it is possible to not only identify the expression 
profile of a target gene and the required metabolic conditions 
for its expression (transcriptome studies) but also to reveal 
whether the hypothetical protein is produced employing pro-
teomic tools. The combination of such methodologies has 
enabled exciting discoveries in protein science (Pinu et al. 
2019; Krassowski et al. 2020). However, the characteriza-
tion of the function of a protein remains a bottleneck to be 
overcome in the postgenomic era.

Briefly, it is possible to enumerate up to five different 
strategies for the characterization of an unknown protein 

(Sivashankari and Shanmughavel 2006). The most accu-
rate of these approaches is based on the resolution of the 
three-dimensional structure of a protein by X-ray diffrac-
tion studies or methodologies such as nuclear magnetic 
resonance spectroscopy (NMR) or single-particle cryoelec-
tron microscopy (cryo-EM) (Ronda et al. 2015). There is a 
direct correlation between protein structure and function, so 
the high-resolution structure of a hypothetical protein can 
provide hints about its biochemical functions and reveal 
its biological role. Other approaches include methodolo-
gies based on protein–protein interactions (Marcotte et al. 
1999). It is possible to infer the functions of proteins based 
on their interaction partners since proteins interact with one 
another to perform complementary functions. Thus, methods 
based on protein–protein interactions can be used to ensure 
the assignment of a protein role. At the genomic level, 
approaches based on comparative genomics and genome 
structure are also promising for protein function prediction 
(Pellegrini et al. 1999; Huynen et al. 2000). These meth-
ods focus on the relationship between genome structure and 
the function of a protein in a metabolic pathway, since it is 
expected that proteins that work together evolve together. 
The conservation of a gene neighborhood across different 
species (synteny) can also be exploited to identify protein 
function. Clustering approaches are useful as well, allowing 
the grouping of genes with a similar function in a specific 
cluster (Overbeek et al. 1999). Other modern protein func-
tion prediction methods can involve machine learning via 
high-throughput data analysis, which instead of focusing on 
specific protein domain prediction, addresses probability 
and employs accurate mathematical calculations to assign 
protein functions (Nakano et al. 2019; Jumper et al. 2021). 
Each of the approaches described here has advantages and 
disadvantages in the study of hypothetical proteins; however, 
regardless of the approach used, appropriate biochemical 
assays are always necessary to confirm a protein’s function.

Interestingly, studies focusing on the identification and 
characterization of CAZymes routinely report the presence 
of several targets annotated as hypothetical conserved pro-
teins (Horta et al. 2018). These targets, which are up- or 
downregulated according to the cultivation conditions of 
the studied organisms, indicate that the major puzzle of 
enzymatic biomass degradation is still incompletely under-
stood. It is worth mentioning that the saccharification of 
biomass is a synergistic process; thus, not all key players 
in the process have been discovered and characterized, and 
corresponding biotechnological and industrial interventions 
have not yet reached their highest efficiency. In this context, 
there remains great potential for the future development and 
improvement of bioinformatics and computation tools for 
predicting and assigning the functions of nonidentified and/
or unannotated proteins.

https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.rcsb.org/
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In addition to predicting the characteristics of unknown 
proteins, bioinformatics tools can be used for purposes such 
as in silico bioprospecting of genes/proteins. This method 
consists of discovering genes and metabolic pathways based 
solely on the large number of sequences found in databases, 
which may be used for biotechnological purposes (Fer-
rer et al. 2016). In silico bioprospecting can generally be 
divided into two stages: the search for databases and the 
use of bioinformatics tools to select and analyze potential 
candidates (Kamble et al. 2019).

Such techniques are possible due to the continuous decline 
in sequencing costs, which has led to the generation of mas-
sive amounts of information from highly diverse types of 
genomes. The combination of several tools and methods 
has facilitated the discovery of new enzymes with different 
functions and applications, in addition to assisting in their 
functional characterization (Gerlt 2017). Bioprospecting can 
also be performed with a combination of different approaches 
to obtain new bioproducts, such as newly designed molecu-
lar probes that can aid in prospecting enzymes or in build-
ing metagenomic libraries (Lee and Lee 2013). An example 
of the application of this technique is the discovery of new 
enzymes related to the degradation of lignocellulosic matter.

Several hydrolytic enzymes have been obtained via the 
application of metagenomics tools to noncultivable micro-
organisms (Berini et al. 2017; Popovic et al. 2015), as in 
the work of Salmeán et al. (2018), who identified CAZymes 
from metagenomics data from marine environments. In sil-
ico bioprospecting has been used to discover fungal ester-
ases from the CAZyme database (Dilokpimol et al. 2018), 
and research groups have sought to develop computational 
tools for identifying secondary metabolite genes in micro-
organisms and plants (Medema 2018). This is possible due 
to the constant advances in bioinformatics, resulting in large 
amounts of available data on genomes, metabolic pathways, 
operons, omics information, gene regulatory networks, dif-
ferential expression, protein characteristics, and structural 
data deposited in several databases (Fasim et al. 2021).

Application of bioinformatics in enzyme 
engineering

The integration of different data and bioinformatics 
approaches is a very useful tool for identifying new protein 
targets and for directing the study of protein engineering 
(Florindo et al. 2018; Lenfant et al. 2017; Zhou et al. 2019).

Genetic information from different levels must be integrated 
to implement a successful fungal engineering approach, rang-
ing from the gene expression profile encoding an enzyme or 
natural product (NP) of interest to the structural properties 
of a certain protein. Thus, bioinformatics plays a central role 
in mining, integrating, and interpreting the data from these 
studies. Recently, significant advances in the identification, 

understanding, and engineering of fungal biosynthetic gene 
clusters (BGCs) have facilitated the biosynthesis of fungal NPs 
at the global, pathway, and enzyme levels using in vivo and 
in vitro approaches. It advances the progress in understanding 
how fungal BGCs are regulated, and the subsequent applica-
tions of these novel biosynthetic enzymes as biocatalysts. In 
2019, Skellam (2019) described three principal categories for 
the methods used in fungal engineering of NPs as follows: 
(1) induction of transcriptional perturbations (e.g., through 
epigenetic modifications or the overexpression of global tran-
scriptional regulators); (2) manipulating specific biosynthetic 
pathways either in the native host or in a heterologous host; 
and (3) the specific engineering of enzymes to synthesize 
novel NPs in vivo or in vitro. Each strategy varies according 
to the nature of the target compound and the specificities of 
the fungal species from which it was produced, leading to the 
discovery of new enzyme classes/functions, pathways, and het-
erologous expression systems, low-cost processes, and high-
level production.

The biochemical characterization of proteins is essential for 
understanding the function and activity of a particular enzyme 
(Manavalan et al. 2017; Uechi et al. 2020; Dilokpimol et al. 
2018). One approach that can be used in this type of study is to 
search RNA-Seq databases to identify key enzymes involved 
in a given process (Borin et al. 2017; Li et al. 2020b). In T. 
harzianum IOC-3844, studies on a β-glucosidase from the 
GH1 family (rThBgl) revealed high expression of the gene 
according to RNA-Seq data related to plant biomass deg-
radation (Santos et al. 2016). This enzyme was cloned and 
expressed heterologously in Escherichia coli, and the product 
was subjected to structural crystallography. In another study, 
the accessory protein swollenin was identified in a cluster with 
CAZyme enzymes in BACs of T. harzianum IOC-3844 (Cru-
cello et al. 2015). In this study, high synergism of swollenin 
with a xylanase from T. viride was found (Santos et al. 2017).

For a protein to be applied in a bioprocess many times, it 
needs to be adapted, which is known as protein engineering 
(DiTursi et al. 2006). This process involves genetically mod-
ified organisms and random or induced mutations in spe-
cific domains of the protein. In silico studies can direct this 
process according to the comparison of a protein with the 
desired properties and the target protein to be engineered; 
through multiple alignments, synthetic analysis and phylog-
eny, it is possible to design a tailor-made enzyme suitable 
for a given bioprocess (Pucci et al. 2017; Yang et al. 2019; 
Dilokpimol et al. 2018). Santos et al. (2019) performed the 
alignment of a highly glucose tolerant β-glucosidase from 
Humicola insolens (ideal for application in industrial cel-
lulose degradation) with a low-tolerance enzyme from T. 
harzianum and found two amino acid residues responsible 
for this difference. Using the technique of site-directed muta-
tion, it was then possible to obtain a β-glycosidase from T. 
harzianum with high glucose tolerance.
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Conclusions

In this review, we present an overview of the major bioinfor-
matics tools that could be applied for the bioprospection of 
hydrolytic enzymes and TFs related to cellulose and hemi-
cellulose degradation. As fungi are producers of potential 
new enzymes, approaches including genomics, transcrip-
tomics, proteomics, and systems biology are used to reveal 
the degradative mechanism employed by fungi, producing 
an unprecedented volume of biological data. We propose 
biological data integration as a methodological strategy that 
is useful for prospecting and producing enzymes appropri-
ate for biotechnological process. The correlation of different 
types of data can contribute to a better understanding of 
how the expression of genes, enzymes, and regulators plays 
important roles in pathways or reactions of biotechnological 
interest that are suitable for improvement. The major chal-
lenge is to integrate data from different experiments or bio-
logical databases, which often have different formats and are 
not promptly correlated. Hence, we assume that data integra-
tion approaches will become increasingly sophisticated and 
accessible, thus facilitating the understanding and prediction 
of the actions of complex biological systems.
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