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Sugarcane mosaic virus (SCMV) is the main etiological agent of sugarcane mosaic disease, which affects
sugarcane and other grass crops. Despite the extensive characterization of quantitative trait loci control-
ling resistance to SCMV in maize, the genetic basis of this trait in sugarcane is largely unexplored. Here, a
genome-wide association study was performed and machine learning coupled with feature selection was
used for genomic prediction of resistance to SCMV in a diverse sugarcane panel. Nine single-nucleotide
polymorphisms (SNPs) explained up to 29.9% of the observed phenotypic variance and a 73-SNP set pre-
dicted resistance with high accuracy, precision, recall, and F1 scores (the harmonic mean of precision and
recall). Both marker sets were validated in additional sugarcane genotypes, in which the SNPs explained
up to 23.6% of the phenotypic variation and predicted resistance with a maximum accuracy of 69.1%.
Synteny analyses suggested that the gene responsible for the majority of SCMV resistance in maize is
absent in sugarcane, explaining why this major resistance source has not been identified in this crop.
Finally, using sugarcane RNA-Seq data, markers associated with resistance to SCMV were annotated,
and a gene coexpression network was constructed to identify the predicted biological processes involved
in resistance. This network allowed the identification of candidate resistance genes and confirmed the
involvement of stress responses, photosynthesis, and the regulation of transcription and translation in
resistance to SCMV. These results provide a practical marker-assisted breeding approach for sugarcane
and identify target genes for future studies of SCMV resistance.
� 2023 Crop Science Society of China and Institute of Crop Science, CAAS. Publishing services by Elsevier

B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Sugarcane (Saccharum spp.) is cultivated in tropical regions
worldwide as not only a leading sugar-producing crop but a source
of renewable energy obtained from its juice and bagasse [1]. Brazil,
for many years the leader in the global cultivation of sugarcane,
currently grows approximately 40% of global production [2]. How-
ever, sugarcane yield is threatened by several diseases, with sugar-
cane mosaic one of the most damaging globally [3]. In addition to
the characteristic mosaic pattern displayed on leaves, other symp-
toms of the disease include dwarfing, striping and streaking of
culms, and shortening of internodes in highly susceptible geno-
types [4]. In Brazil, the disease emerged at the beginning of the
20th century, incurring massive yield losses and driving the sugar-
cane industry to the brink of collapse in 1920–1930. Damage
caused by sugarcane mosaic disease has since been controlled via
the use of resistant cultivars and the adoption of practices such
as the planting of healthy setts and roguing of nurseries and com-
mercial fields. However, the disease is still a threat to sugarcane
production, and resistance to sugarcane mosaic is a primary con-
cern in breeding programs [5].

Three viruses of the Potyviridae family are currently recognized
as etiological agents of the disease in sugarcane: Sugarcane mosaic
virus (SCMV), Sorghum mosaic virus, and Sugarcane streak mosaic
virus [6]. SCMV, belonging to the Potyvirus genus, is a widespread
td.

garcane

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.cj.2023.06.009
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:anete@unicamp.br
https://doi.org/10.1016/j.cj.2023.06.009
http://www.sciencedirect.com/science/journal/22145141
http://www.keaipublishing.com/en/journals/the-crop-journal/
https://doi.org/10.1016/j.cj.2023.06.009


R.J.G. Pimenta, A.H. Aono, R.C.V. Burbano et al. The Crop Journal xxx (xxxx) xxx
species and is the only one of the three found to infect sugarcane
naturally in Brazil [4,7,8]. SCMV has been reported to cause sugar-
cane yield losses of over 50% [9] and to reduce juice quality [10],
sett germination, and plant photosynthetic activity [4,11]. High
yield losses arising from infection by the virus have led to the dis-
continuation of several sugarcane cultivars [12].

SCMV also infects many other closely related Poaceae species,
including maize (Zea mays), where it causes large yield losses,
especially in Europe and China [13]. Quantitative-trait locus
(QTL) mapping studies have identified two major and three minor
QTL controlling resistance to SCMV in maize. Together, the two
major loci, Scmv1 and Scmv2, usually explain up to 60%–70% of
the phenotypic variance observed for resistance [14–16]. Recently,
researchers have fine-mapped these QTL and identified the causal
genes underlying resistance [17,18].

However, in sugarcane, data on resistance to SCMV are scarce.
Three marker–trait association studies targeting SCMV resistance
in the crop have been conducted [19–21], but two included very
few (�50) genotypes and all employed dominantly scored markers.
This apparent disparity between the information on SCMV resis-
tance available for sugarcane and maize can be partially explained
by the greater economic importance of the latter species in several
countries, but the genomic complexity of sugarcane is also to
blame. Modern cultivars are derived from only a few crosses
between two highly autopolyploid species, S. spontaneum
(2n = 5x = 40 to 16x = 128; x = 8) [22] and S. officinarum
(2n = 8x = 80; x = 10) [23]. These hybrids have large [23], highly
polyploid [24], aneuploid [25] and duplicated [26] genomes, char-
acteristics that hinder sugarcane breeding research. Most sugar-
cane traits are controlled by many small-effect loci [27–29].
However, given the presence of Scmv1 and Scmv2 in maize, it is
unexpected that no major loci controlling SCMV resistance in sug-
arcane have been identified.

In view of the crop’s complex genome and the damage by SCMV
to its yield, new methods are needed for the investigation of sugar-
cane resistance to the virus. The present study aimed to identify
DNA markers associated with SCMV resistance and to elucidate
its molecular basis using genomic and transcriptomic approaches.
A panel of Saccharum accessions was assessed for SCMV resistance
and genotyped by genotyping by sequencing (GBS). These data
were used in a genome-wide association study (GWAS) and for
genomic prediction with machine learning (ML) and feature selec-
tion (FS) to identify markers associated with resistance. Associated
markers were genotyped in additional accessions for validation
and were annotated using a newly assembled sugarcane transcrip-
tome. This allowed the incorporation of SCMV-associated genes
into a coexpression network, permitting a broader investigation
of the molecular basis underlying sugarcane resistance to this
virus.
2. Materials and methods

2.1. Plant material

The plant material employed in the study has been described
elsewhere [29]. The experimental population consisted of a panel
of 97 sugarcane genotypes, comprising wild accessions of S. offici-
narum, S. spontaneum, and S. robustum; commonly grown sugar-
cane and energy cane clones; and commercial cultivars from
Brazilian breeding programs. The accession names and pedigree
information are presented in Table S1. A field experiment following
a randomized complete block design with three blocks was estab-
lished in May 2017 at the Advanced Center for Technological
Research in Sugarcane Agribusiness located in Ribeirão Preto, São
Paulo, Brazil (4�520340 0W, 21�120500 0S). Plants were grown in 1-m-
2

long three-row plots with row-to-row and interplot spacings of
1.5 and 2 m, respectively. Each row contained two plants, for a
total of six plants of each genotype per plot. Infection by SCMV iso-
late RIB-2 [21] was allowed to occur under natural conditions in
conjunction with high inoculum pressure and a high incidence of
aphid vectors.

2.2. Phenotyping

Plants were phenotyped in two cropping seasons: plant cane
was assessed in February 2018 (9 months after planting) and
ratoon cane in July 2019 (9 months after the first harvest). The
severity of SCMV symptoms was assessed by two or three indepen-
dent evaluators, who classified the top visible dewlap leaves in
each plot using a diagrammatic scale consisting of four levels of
increasing intensity of mosaic symptoms (Fig. S1).

Data normality was assessed by the Shapiro-Wilk test, and nor-
malization was performed with the bestNormalize package [30] in
R software [31]. Best linear unbiased predictors (BLUPs) were esti-
mated with the breedR R package [32] using a mixed model, as
follows:

Yijm ¼ lþ Bj þ Ym þ BYjm þ Gi jmð Þ þ þeijm

where Yijm is the phenotype of the ith genotype in the jth block and
themth year of phenotyping, and the trait mean is represented by l.
Fixed effects were modeled to estimate the contributions of the jth

block (Bj), the mth year (Ym) and the interaction between block
and year (BYjm). Random effects included genotype (G) and residual
error (e), representing nongenetic effects.

2.3. Genotyping

Genomic DNA was extracted from leaves and used for the con-
struction and sequencing of a GBS library as described by Pimenta
et al. [29]. For operational reasons, 94 of the 97 genotypes in the
panel were included in the library; genotypes 87, 88 and 95 were
excluded (see Table S1). Two 150-bp single-end sequencing
libraries were prepared, and their contents were sequenced on a
NextSeq 500 instrument (Illumina, San Diego, CA, USA). After the
sequencing quality was checked, three tools were used for SNP
calling: SAMtools version 1.6 [33], FreeBayes version 1.1.0–3 [34]
and the TASSEL4-POLY pipeline [35]. A monoploid chromosome
set obtained from the allele-defined S. spontaneum genome [36]
that included the A haplotype and unassembled scaffolds was used
as a genomic reference. After variant calling, VCFtools version
0.1.13 [37] was used to retain biallelic SNPs with a minor-allele
frequency of 0.1, a maximum of 25% missing data, and a minimum
sequencing depth of 50 reads. SNPs identified by TASSEL and at
least one other tool were then selected, and the ratio between alle-
les (allele proportions, APs) was obtained for each marker.

2.4. Association analyses

2.4.1. Mixed modeling
Association analyses were performed using mixed linear model-

ing in the GWASpoly R package [38]. For these analyses, APs were
transformed into genotypic classes with a fixed ploidy of 12 in the
vcfR R package [39]. A realized relationship model (MMT) matrix
[40], built in GWASpoly, was included as a random effect, and three
principal components from a principal component analysis per-
formed with genotypic data were included as fixed effects. Six
marker-effect models were used for association analyses: general,
additive, simplex dominant reference, simplex dominant alterna-
tive, diploidized general, and diploidized additive models. Quan-
tile–quantile (Q–Q) plots of �log10(P) values of the markers were
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generated for all the models, and Manhattan plots were con-
structed for models with appropriate inflation profiles. Bonferroni
correction with a = 0.05 was used to establish the significance
threshold for associations. The phenotypic variance explained by
each marker (R2) significantly associated with SCMV resistance
was estimated using a linear model in R.
2.4.2. ML coupled with FS
Following a genomic prediction approach previously employed

for sugarcane [29,41], ML algorithms coupled with FS were used to
predict the attribution of genotypes to two groups: those that pre-
sented mosaic symptoms in any block or year (susceptible) and
those that presented no symptoms in any case (resistant). Eight
ML algorithms implemented in the scikit-learn Python 3 module
[42] were tested: adaptive boosting (AB) [43], decision tree (DT)
[44], Gaussian naive Bayes (GNB) [45], Gaussian process (GP)
[46], K-nearest neighbor (KNN) [47], multilayer perceptron (MLP)
neural network [48], random forest (RF) [49] and support vector
machine (SVM) [50] models. Three FS techniques were employed
to estimate feature importance and create subsets of marker data:
gradient tree boosting [51], L1-based FS using a linear support vec-
tor classification system [50] and univariate FS using analysis of
variance [52], which were also implemented in scikit-learn. The
markers selected by at least two of these FS methods were used
along with the eight ML algorithms to classify genotypes as resis-
tant or susceptible. To implement a cross-validation strategy, a
stratified K-fold (k = 5) repeated 100 times for different data con-
figurations was used. The following metrics were evaluated: accu-
racy (proportion of correctly classified items), recall (items
correctly classified as positive among the total number of posi-
tives), precision (items correctly classified as positive among the
total items identified as positive), and the F1 score (the harmonic
mean of precision and recall). The area under the receiver operat-
ing characteristic (ROC) curve (AUC) was also calculated for all the
models using scikit-learn and plotted with the ggplot2 R package
[53].
2.5. Marker validation

Markers significantly associated with SCMV resistance were
subjected to validation in two additional panels with sugarcane
genotypes previously assessed for this trait. The first panel com-
prised 28 wild accessions, including representatives of S. offici-
narum, S. spontaneum, S. robustum, S. barberi, and interspecific
hybrids [54], and the second panel comprised 64 Brazilian varieties
and elite clones from the three main sugarcane breeding programs
in Brazil [55]. These 92 genotypes (Table S2) were used for valida-
tion using MonsterPlex Technology (Floodlight Genomics, Knox-
ville, TN, USA). DNA was extracted from leaves following Aljanabi
et al. [56] or using the GenElute Plant Genomic DNA Miniprep
Kit (Sigma-Aldrich, St. Louis, MO, USA). DNA samples and marker
flanking sequences were sent to Floodlight Genomics, where mul-
tiplex PCR was used to amplify �100-bp fragments containing
markers, which were then sequenced on a HiSeq platform (Illu-
mina). Trimmomatic version 0.39 [57] was used to trim the
single-end sequencing reads using a 5-nt sliding window with a
minimum average Phred quality score of 20 and removing reads
shorter than 30 nt. The trimmed reads were aligned to reference
flanking sequences with Bowtie2 version 2.2.5 [58], and SNP call-
ing was performed with SAMtools and FreeBayes. After APs/geno-
typic classes were obtained for each locus, linear models in R were
used to estimate marker R2 values for each panel, and ML models
were used to predict resistance phenotypes as previously
described.
3

2.6. Synteny analyses

For synteny analyses, the coding DNA sequences (CDSs) of the
causal genes at Scmv1 and Scmv2 were retrieved from the Mai-
zeGDB database [59] and aligned against the S. spontaneum gen-
ome sequence [36] using BLASTn [60]. Synteny plots were
constructed using Circos software version 0.69.9 [61]. The Scmv1
CDS was also aligned to the genome sequences of S. spontaneum
Np-X [62], S. officinarum LA Purple (SRA BioProject accession
PRJNA744175), and the hybrids SP70–1143 [63], R570 [64],
SP80–3280 [65], and CC01–1940 [66].
2.7. Coexpression network construction and marker annotation

To annotate markers associated with SCMV and investigate
their expression profiles, RNA-Seq data supplied by Marquardt
et al. [67] were used. This study provided data from sugarcane
samples grown in Australia with five biological replicates, each
composed of four to five bulked leaves, which were considered
suitable for the construction of a highly robust coexpression net-
work. Sequencing data were downloaded from the Sequence Read
Archive (SRA; BioProject PRJNA474042) and trimmed with Trim-
momatic version 0.39 [57] with the default parameters.

A de novo-assembled transcriptome was obtained using Trinity
version 2.5.1 [68], with the minimum contig length set to 300 bp.
The completeness of the assembly was evaluated with BUSCO ver-
sion 5.1.2 [69] using datasets of conserved orthologs from
Viridiplantae. Annotations were performed with Trinotate [70]
and included similarity searches of sequences in the UniProt data-
base [71], domain identification according to information in the
Pfam database [72], and predictions of signal peptides with SignalP
[73] and transmembrane domains using TMHMM [74]. Salmon
version 1.1.0 software [75] was used for transcript quantification
with the default parameters. Genes with fewer than 5 transcripts
per million (TPM) on average in at least one sample type were fil-
tered out to exclude genes expressed at low levels, and genes with
no variance across quantifications were excluded using the
WGCNA package [76]. A global weighted gene coexpression net-
work (GWGCN) was constructed with WGCNA. Pairwise Pearson
correlations of TPM values considering a power function fitting
scale-free independence were used. A soft threshold power beta
estimation of 25, corresponding to an R2 value of 0.85, was esti-
mated and generated a scale-free topology model. Functional mod-
ules in the network were defined using the unweighted pair group
method with arithmetic mean (UPGMA) based on a topological
overlap matrix and dynamic dendrogram pruning based only on
the dendrogram.

To annotate markers associated with SCMV resistance and
locate them in the network, the de novo transcriptome assembly
was aligned with BLASTn against the S. spontaneum genomic refer-
ence used for SNP calling, and the closest genes upstream and
downstream of each marker at a maximum distance of 2 Mb were
retrieved. The following parameters were used: a minimum of 90%
identity, a minimum E-value of 1e-50, and best hit algorithm over-
hang and edge values of 0.1. Similarly, the CDSs of the causal genes
at Scmv1 and Scmv2were aligned against the transcriptome assem-
bly using BLASTn with default parameters.

All genes present in the network modules containing genes
associated with SCMV resistance were recovered and used for Gene
Ontology (GO) [77] enrichment analysis with the topGO R package
[78] in conjunction with Fisher’s test with Bonferroni correction
with a = 0.01. REVIGO [79] was used for the visualization and anal-
ysis of GO categories of genes associated with SCMV resistance and
in enriched categories associated with the genes in the network
modules.
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3. Results

3.1. Panel phenotyping and genotyping

Ninety-seven sugarcane accessions were evaluated for the pres-
ence and severity of SCMV symptoms in two consecutive years. A
skew in the distribution of the data toward an absence of symp-
toms was observed; despite normalization procedures, these data
did not follow a normal distribution, as indicated by the Shapiro–
Wilk test (P = 2.2e�16). Based on the occurrence of SCMV symp-
toms, the panel could be divided into two groups: 62 resistant
genotypes, which did not present symptoms in any block or year,
and 35 susceptible genotypes, which presented symptoms on at
least one occasion.

Following the construction and sequencing of the GBS library,
biallelic SNPs were identified using FreeBayes (3,747,524 SNPs),
SAMtools (3,152,409 SNPs) and the TASSEL-4-POLY pipeline
(569,360 SNPs). After filtering procedures were performed and
the intersection between tools was examined, 37,001 of these
markers were found to be called by TASSEL4-POLY and at least
one of the other tools, constituting the final set of reliable SNPs.

3.2. Association analyses

3.2.1. Mixed modeling
Q–Q plots generated by mixed modelling genome-wide associ-

ation analyses targeting SCMV resistance can be found in Fig. S2.
Most models showed an appropriate profile of inflation of P values;
exceptions disregarded for further analyses included the general
model, which presented insufficient control of inflation, and the
simplex dominant alternative model, which presented deflation.
A stringent significance threshold was used to establish 20 signif-
icant marker–trait associations, some of which were highly signif-
icant (Fig. 1); the R2 values of associations ranged from 0.017 to
0.299 (Table S3). Most markers were associated with SCMV resis-
tance by more than one model, and nine nonredundant markers
were representative of all associations.

3.2.2. ML coupled with FS
Eight ML algorithms were tested to predict the attribution of

sugarcane genotypes to SCMV-resistant or SCMV-susceptible
groups based on genotypic data. In assessing the potential of these
algorithms for performing this task using the full marker dataset,
the predictive accuracies ranged from 52.8 (DT) to 66.9% (RF), with
a mean of 60.3% (Fig. S3; Table 1). The remaining metrics evaluated
showed much inferior results, with means of 21%, 26.8% and 20.7%
for precision, recall and F1 score, respectively. GP performed par-
ticularly poorly, with the mean of measurements equal to zero
for these three metrics (Figs. S4–S6; Table 1).
Fig. 1. Manhattan plots generated from association analyses in which the best linear un
were used. Four different models were used: additive, simplex dominant reference (1-do
models. On the X-axis, S represents scaffolds not associated with any of the Saccharum
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The employment of three FS methods enabled the identification
of a 73-SNP dataset which led to considerable increases in all met-
rics of all models. With the reduced dataset, a mean accuracy of
90.2%, with a maximum of 99.7% using MLP, was obtained
(Fig. S3; Table 1). Even more pronounced increases were observed
for the other metrics: the mean precision was 79.6%, with a maxi-
mum of 100% with MLP (Fig. S4; Table 1); the mean recall was
91.4%, with a maximum of 100% with KNN and SVM (Fig. S5;
Table 1); and the mean F1 score was 83.6%, with a maximum of
99.6 with MLP (Fig. S6; Table 1). ROC curves and their AUCs sup-
ported the promising results of FS in the predictive task. When
all the markers were used, all the models presented ROC curves
close to the level associated with chance alone, with AUCs ranging
from 0.46 to 0.57 (Fig. 2a). However, when markers selected by FS
were used, most ROC curves indicated much better model perfor-
mance, with AUCs of up to 0.99 (Fig. 2b). Only DT and GP did not
show appreciable increases in the AUC, and could not be consid-
ered appropriate methods for genomic prediction in this case.

3.3. Marker validation

Two groups of sugarcane genotypes previously assessed for
SCMV resistance were genotyped with MonsterPlex Technology
to validate the markers identified in the association panel. The
sequencing of the MonsterPlex library generated a total of
38,581,797 single-end reads, 99.8% of which presented a mean
Q-value greater than 30; these values remained consistently high
for the first 100 bases of the reads (Fig. S7a). These data encom-
passed 81 of the 92 samples sent for analysis; DNA from genotypes
4, 5, 18, 68, 69, 70, 71, 73, 76, 77, and 79 (Table S2) were not ampli-
fied well, and these samples were consequently absent in the
sequencing results. Ten of these samples were represented by wild
S. officinarum F1 accessions, with only genotype 18 representing an
interspecific hybrid commercial variety. After trimming,
38,574,693 reads were retained, 99.9% of which had a mean Q-
value greater than 30 (Fig. S7b). Using SAMtools and FreeBayes,
53 of the 82 target SNPs (64.6%) could be called.

Seven of these SNPs were identified by GWAS as significantly
associated with SCMV resistance. When associations involving
these markers were tested using linear models, the R2 values were
generally lower than those of the original panel and were fre-
quently close to zero. However, these values remained positive
and were as high as 0.236 (Table S4). The remaining 46 SNPs iden-
tified belonged to the reduced 73-SNP dataset identified by FS.
These markers were applied to the eight ML models tested, which
resulted in a mean accuracy of 61.6%, with a maximum of 69.1% by
the RF model. This model was also among the top-ranking models
in terms of precision (68.6%), recall (94.1%) and F1 score (79.3%) for
the identification of resistant genotypes (Table 2).
biased predictor (BLUP) values of sugarcane mosaic virus (SCMV) symptom severity
m-ref), diploidized general (diplo-general) and diploidized additive (diplo-additive)
spontaneum chromosomes.



Table 1
Metrics for the prediction of sugarcane mosaic virus (SCMV) resistance by machine learning (ML) models before and after feature selection procedures.

Model Before feature selection After feature selection

Accuracy (%) Precision (%) Recall (%) F1 (%) Accuracy (%) Precision (%) Recall (%) F1 (%)

AB 60.7 23.8 36.6 27.3 86.2 70.0 87.9 76.5
DT 52.8 30.7 29.5 29.2 66.4 50.4 52.1 49.2
GNB 54.4 30.9 31.7 28.9 96.7 95.2 95.6 94.9
GP 66.3 0.00 0.00 0.00 93.2 81.7 98.2 88.4
KNN 59.6 18.1 30.9 21.6 95.7 87.3 100.0 92.8
MLP 55.3 54.6 38.3 43.0 99.7 100.0 99.3 99.6
RF 66.9 8.2 38.8 13.2 85.6 57.5 98.6 70.7
SVM 66.6 1.4 8.4 2.4 98.1 94.5 100.0 96.9
Mean 60.3 21.0 26.8 20.7 90.2 79.6 91.4 83.6

AB, adaptive boosting; DT, decision tree; GNB, Gaussian naive Bayes; GP, Gaussian process; KNN, K-nearest neighbor; MLP, multilayer perceptron neural network; RF, random
forest; SVM, support vector machine.

Fig. 2. Receiver operating characteristic (ROC) curves and area under the curve (AUC) results for the performance of machine learning models in predicting sugarcane mosaic
virus (SCMV) resistance using the full marker dataset (A) and markers selected by feature selection (B). AB, adaptive boosting; DT, decision tree; GNB, Gaussian naive Bayes;
GP, Gaussian process; KNN, K-nearest neighbor; MLP, multilayer perceptron neural network; RF, random forest; SVM, support vector machine.
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3.4. Synteny analyses

Despite the close phylogenetic relationship of maize and sugar-
cane, BLAST searches of Scmv1 in the S. spontaneum genome resulted
in no hits, suggesting that this gene is absent in this species. Searches
in the genomes of six further sugarcane accessions also returned no
matches for this gene. The sequence of Scmv2, in contrast, produced
a 373-bp alignment with 88.7% identity and an E-value of 4.92e-
127. This match corresponded to the gene Sspon.02G0027920-1A,
which, similarly to the causal gene at Scmv2, encodes an auxin-
binding protein. It is located on chromosome 2A and is 1.7 kb from
the marker Chr2A_103190628, which was identified as being associ-
ated with SCMV resistance by FS (Fig. 3).
5

3.5. Coexpression network construction and marker annotation

To assemble a de novo sugarcane transcriptome for marker
annotation and expression analysis, more than two billion
(2,477,287,294) sugarcane RNA sequencing (RNA-Seq) reads were
retrieved from the SRA, 76% of which (1.9 billion) were retained
after trimming. The transcriptomic reference assembled using Trin-
ity comprised 611,480 transcripts with an N50 of 1233 bp, repre-
sented by 212,076 longest isoforms (henceforth referred to as
‘‘genes”) with an N50 of 2561 bp. The complete assembly contained
83.8% of conserved orthologs from green plants, as reported based
on BUSCOs (Table S5). After quantification with Salmon, 131,615
genes were discarded for very low expression. The remaining genes



Table 2
Predictive accuracy, precision, recall and F1 scores of machine learning approaches employed to predict SCMV resistance in the validation panel.

Model Accuracy (%) Precision (%) Recall (%) F1 (%)

AB 61.7 64.7 86.3 73.9
DT 59.3 61.8 92.2 74.0
GNB 46.9 61.8 41.2 49.4
GP 65.4 65.3 96.1 77.8
KNN 64.2 63.8 100.0 77.9
MLP 63.0 69.1 74.5 71.7
RF 69.1 68.6 94.1 79.3
SVM 63.0 54.0 79.1 64.2
Mean 61.6 63.6 82.9 71.0

AB, adaptive boosting; DT, decision tree; GNB, Gaussian naive Bayes; GP, Gaussian process; KNN, K-nearest neighbor; MLP, multilayer perceptron neural network; RF, random
forest; SVM, support vector machine.
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were used to construct a GWGCN. Using the UPGMA approach, 64
functional modules were defined in this network, with sizes rang-
ing from 58 to 32,980 genes and a mean size of 1257.

The annotatation of markers identified as being associated with
SCMV resistance by GWAS and FS based on the S. spontaneum gen-
Fig. 3. Synteny plot of Scmv2 on chromosome 3 of Zea mays (blue) and Saccharum spon
associated with sugarcane mosaic virus (SCMV) resistance by association mapping (in r
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ome enabled the association of 69 markers with 220 isoforms rep-
resenting 84 genes. Of these genes, 35 were located in 26 modules
in the coexpression network. A summary of the alignment results
is presented in Table S6. Among the annotated genes, a disease-
resistance protein associated with the Chr1A_90316612 marker
taneum A chromosomes and unassembled scaffolds (red). Ticks represent markers
ed) and feature selection (in black).
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was of particular interest. For better visualization of the biological
processes associated with all the annotated genes, their GO-
associated terms were retrieved and used to construct a network
using the REVIGO tool (Fig. 4). The most prominent terms identi-
fied were linked to the regulation of transcription and translation,
stress responses, and organismal development. The ‘‘modulation
by virus of host process” term, which is associated with a peroxiso-
mal oxidase and the marker Chr6A_86163774, was also identified.

Alignment of the sequence of Scmv2 from maize against the
transcriptome yielded several hits, the great majority of which
were with TRINITY_DN5998_c0_g1. This gene was annotated as
an auxin-binding protein and located in functional module 5 in
the coexpression network, which also contained four genes located
near SNPs associated with SCMV resistance. Among the hits with
TRINITY_DN5998_c0_g1, the one with the highest E-value (1.07e-
176) occurred in isoform 9, representing a 524-bp alignment with
88.1% identity. This and all isoforms of the gene also presented
high-scoring alignments with the region containing
Sspon.02G0027920-1A.

As a final strategy for investigating the biological processes
involved in SCMV resistance, the GO terms of the 14,732 genes pre-
sent in the 26 modules containing the genes associated with resis-
tance were determined. Because these genes were initially
associated with very many GO terms (3859 terms in the biological
process category), a GO enrichment analysis using Fisher’s test
with Bonferroni correction was performed. The 117 terms resulting
from this analysis were used to construct a TreeMap in REVIGO
Fig. 4. Network of Gene Ontology (GO) biological process terms
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(Fig. S8). The main identified terms included ‘‘response to salt
stress”, ‘‘DNA integration”, ‘‘regulation of multicellular organismal
process”, ‘‘photosynthesis”, and ‘‘seed germination”.

4. Discussion

Although our GWAS analysis did not reveal major loci control-
ling resistance to SCMV in sugarcane, it led to the identification
of SNPs significantly associated with this trait, explaining a small
(1.7%) to moderate (29.9%) percentage of the observed phenotypic
variation. Compared to Scmv1, the major SCMV resistance QTL
identified in maize, which alone explains 54%–56% of observed
variation [14,16], these findings might seem modest. However,
they fall within the upper range revealed by other mapping studies
in sugarcane; markers explaining10% or less of the phenotypic
variation in traits of agronomic importance are common in this
crop [27,28]. Specifically, for resistance to SCMV, previous studies
identified markers explaining 5%–14% of the observed variance as
individual markers [20,21] or up to �40% together [19]. The appar-
ent quantitative nature of resistance to SCMV in sugarcane attests
to the limitations of conventional marker-assisted breeding in this
crop and demonstrates the need for the deployment of high-
throughput genotyping and specific methodologies for association
analyses in sugarcane.

One finding of our study that contributes to understanding the
quantitative nature of SCMV resistance in sugarcane is the absence
in the S. spontaneum genome of a gene that is homologous to
associated with sugarcane mosaic virus (SCMV) resistance.
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ZmTrxh, the causal gene underlying Scmv1. The expression of
ZmTrxh, which encodes an atypical thioredoxin that acts as a
molecular chaperone, is necessary to disrupt infection by SCMV
[18]. As in other Poaceae species [18], close orthologs of ZmTrxh
are not present in S. spontaneum, resulting in the lack of this speci-
fic resistance mechanism in this crop. Given that ZmTrxh is absent
even in several maize lines, its presence in other sugarcane geno-
types cannot be completely ruled out. However, BLASTn align-
ments of its sequence were also performed against those of all
other sugarcane genomes available to date, none of which returned
significant alignments with the ZmTrxh sequence. Given the very
narrow genetic base of sugarcane [22], this gene is likely to be
absent in other genotypes of commercial relevance.

In addition to GWAS, ML algorithms coupled with FS were
employed to predict genotype resistance or susceptibility to SCMV.
Similarly to previous studies in which this genomic prediction
methodology was applied to sugarcane to evaluate resistance to
brown rust [41] and sugarcane yellow leaf virus [29], very promis-
ing values for several metrics were obtained. These values were
considerably superior to those obtained by Barnes et al. [19],
who predicted sugarcane resistance to SCMV with an accuracy of
76% based on random amplified polymorphic DNA markers. Our
results arose from a highly restricted SNP set obtained by FS, none
of which had been identified by GWAS. A similar joint learning
methodology based on FS and ML and combining classification
and regression strategies has recently been shown [80] to be highly
suitable for the genomic prediction of several agronomic traits of
sugarcane and polyploid forage grass species.

Unlike Scmv1, the causal gene at the second major SCMV resis-
tance QTL frommaize (Scmv2) has an ortholog in the S. spontaneum
genome. One marker identified through FS (Chr2A_103190628)
was found to be located close (1.7 kb) to this region. Linkage dise-
quilibrium is high in sugarcane, persisting over physical distances
of up to 2 Mb [29]. Thus, it is possible that this marker is linked to
Sspon.02G0027920-1A, the S. spontaneum gene syntenic to the
auxin-binding protein gene at Scmv2 [17]. This finding is an indica-
tion of the potential suitability of FS methodologies for the identi-
fication of QTL, which is supported by other studies focused on the
identification of QTL controlling highly quantitative traits [81].

To apply the findings of our study to sugarcane breeding, valida-
tion of the markers associated with SCMV resistance was per-
formed. In sugarcane, the validation of individual SNPs has been
successfully achieved only for resistance to orange rust [82]. In
the context of genomic prediction, SNP validation in sugarcane test
populations was recently implemented by Hayes et al. [83], who
employed single-dose markers obtained from a SNP chip and
achieved mean predictive accuracies of 29%–47% for various agro-
nomic traits. Owing to the relatively high cost of chip genotyping
and the importance of including allele dose information in sugar-
cane genetic studies [41], MonsterPlex Technology was chosen to
validate our GBS-based markers. However, a few issues arose with
this method, including failure in the amplification of many sugar-
cane genotypes and loci.

To some extent, failings in the amplification were expected for
the technique, which does not guarantee the successful amplifica-
tion and sequencing of all targets. The nonamplification of some
genotypes may have been a consequence of the genomic reference
used for SNP calling: the genome of S. spontaneum, a different spe-
cies from that contributing almost all the genotypes for which
amplification failed (S. officinarum). Because most modern sugar-
cane cultivars likely to be targeted by marker-assisted breeding
are hybrids of these two species [22], failure to amplify whole geno-
types is expected to beminimized. The issues with target amplifica-
tion possibly arising from the usage of a non-ideal reference
highlight the importance of providing high-quality sequence data
for genetically complex species such as sugarcane, which would
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advance research and breeding in this crop. Still, this low-cost tar-
geted sequencing technology has the potential to be a viable
approach for sugarcane marker-assisted breeding, especially if cou-
pled with the ML-based genomic prediction approach used in this
study, which effectively reduces the number of markers to be geno-
typed, contributing to the cost-effectiveness of the process. The pre-
dictive accuracy obtained with the RF model is a strong indicator
that this approach can be adopted for other sugarcane traits.

To annotate the markers identified as being associated with
resistance and further investigate biological processes linked to
them, a gene coexpression network was constructed. Although
RNA-Seq data from sugarcane plants infected with SCMV are avail-
able [84], these data come from only two biological replicates,
affording a very low sample number for network modeling.
WGCNA developers recommend a minimum of 15 samples to
avoid noise and biologically meaningless inferences [85]. The sum-
marization of GO terms from genes located close to markers
directly associated with SCMV resistance revealed a few general
processes previously associated with responses to the virus,
including stress responses and the regulation of transcription and
translation [84,86].

A more detailed examination of marker annotations revealed
several genes previously linked to resistance to plant viruses; in
many cases, these associations were established by RNA-Seq or
proteomics. This was the case for allantoinases [87], GLO oxidases
[88], alpha-galactosidases [89], WD repeat-containing protein
homolog genes [90], and pentatricopeptide repeat-containing pro-
teins, which have also been associated by GWASs with resistance
to SCMV in maize [91,92]. Similarly, Shen et al. [93] identified a
ribonuclease H protein gene at a QTL responsible for potyvirus
resistance in soybean and showed that the expression of this gene
was upregulated in resistant cultivars and influenced viral
accumulation.

There is compelling evidence of associations with virus resis-
tance in plants for other candidates identified in our study.
Resistance-gene analogs with nucleotide-binding site leucine-rich
repeat (NBS-LRR) motifs such as RGA5 have been shown to partic-
ipate in recognition of and resistance to potyviruses [94]. The pre-
liminary evidence of associations between polymorphisms in NBS-
LRR protein genes and SCMV resistance in sugarcane [95] strength-
ens the hypothesis that RGA5 acts as a resistance protein opposing
infection by this virus.

Several genes that may represent susceptibility factors to SCMV
were also annotated. A chloroplast carbonic anhydrase has been
identified [96] as a salicylic acid-binding protein that functions in
the hypersensitive response of tobacco. An Arabidopsis homolog
of this protein was shown [97] to interact with potyviral HC-Pro,
weakening host defense responses and facilitating viral infection.
A lower abundance of carbonic anhydrase was also associated with
successful infection by Tobamovirus [98]. In Arabidopsis, SCE1, a
SUMO-conjugating enzyme, interacted with potyviral RNA-
dependent RNA polymerase, and SCE1 knockdown resulted in
increased resistance to Turnip mosaic virus [99]. This protein also
interacts with the replication initiator protein of begomoviruses
and interferes with their replication [100].

Three proteins that show chaperone activity and function in
resistance to viruses were annotated. DNAJ and DNAJ-like proteins
such as C76 and DNAJ 10 have been shown [101] to interact with
the coat protein of potyviruses, promoting viral infection and repli-
cation. A heavy metal-associated isoprenylated plant protein was
shown [102] to interact with the Pomovirus movement protein,
affecting virus long-distance movement. Transcripts of two
chaperones and a heavy metal-associated isoprenylated protein
accumulated differentially in response to SCMV in sugarcane
[86]. Another protein annotated in the present study that has been
shown to interact with the potyviral movement protein P3N-PIPO
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is a beta-glucosidase that may facilitate viral spread through the
plant [103]; beta-glucosidase genes have also been found in a
QTL region for resistance to SCMV [92]. Yeast two-hybrid assays
including these host proteins and SCMV coat and movement pro-
teins could elucidate the involvement of these proteins in the repli-
cation and movement of SCMV.

Finally, the enrichment of GO terms associated with resistance
by our GWGCN analysis sheds light on the complex network of bio-
logical processes involved in resistance to SCMV. The investigation
of modules in coexpression networks can reveal sets of genes that
are modulated together to execute specific functions. This
approach is based on the ‘‘guilt by association” principle, which
proposes that components (genes in our case) with correlated bio-
logical functions tend to interact in networks such as GWGCNs
[104]. According to the results of our analysis, the biological pro-
cesses enriched in SCMV resistance-associated modules included
stress responses, the regulation of transcription and translation,
and a process—photosynthesis—that has long been known [105]
to be affected by SCMV infection but has not been highlighted in
analyses of genes directly associated with resistance. Recent tran-
scriptomic and proteomic studies [84,86,106,107] have shown that
infection by SCMV indeed affects the regulation of genes and pro-
teins involved in these processes. Given that the expression of
genes identified in the present study as being associated with
SCMV resistance is also associated with the expression of genes
controlling these processes, these genes may function in their reg-
ulation during viral infection.

The finding of our study that resistance to SCMV has a more
quantitative nature in sugarcane than in maize is in accord with
what has been observed for most traits in this crop. It also provides
evidence that the ML-based strategy employed in our study repre-
sents a viable approach for marker-assisted breeding in sugarcane;
this strategy should therefore be assessed for its efficacy in relation
to other quantitative traits of economic importance. The annota-
tion of the identified markers via transcriptomic assembly and
the analysis of gene coexpression networks showed that associated
genes participate in key mechanisms of resistance to SCMV. These
findings also revealed strong candidates for the future investiga-
tion of resistance to the virus, which could help elucidate the
molecular mechanisms involved.
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